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Abstract--The evolution and structure of pressure waves of moderate intensity in a liquid suspension with 
solid particles and gas bubbles were investigated experimentally. The experimental data was generalized 
on the basis of theoretical relations. It was shown that dispersive and non-linear effects significantly affect 
wave dynamics. Copyright © 1996 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

The pressure disturbance propagation in a liquid suspension with solid particles has been 
extensively investigated by many authors. In paper of  Kuster & Toksoz (1974), and Mehta (1983) 
the relations for a wave velocity and acoustic wave attenuation coefficient were obtained on the 
basis of  multiple scattering theory and comparison with experimental data was carried out. 
Considering Biot's model for a sound propagation in saturated porous media, Hovem (1980) 
obtained a close agreement between the theory and the experimental data for a velocity field and 
sound attenuation in suspensions. Space-averaged equations for mechanics of  heterogeneous media 
were derived by Nigmatulin (1978). This set of  equations allows us the consideration of  wave 
evolution in two-phase medium. Numerous theoretical and experimental investigations on the wave 
dynamic s in gas-liquid media has been performed by Nakoryakov  et al. (1983). Wave propagation 
in porous medium filled by gas-liquid mixture has been studied by Dontsov (1992). 

The aim of the present paper is to investigate experimentally the evolution and structure of  
pressure waves of  moderate intensity in a liquid suspension with solid particles and gas bubbles 
(three-phase medium). Experimental data were considered in a framework of performed theoretical 
analysis. 

2. T H E O R E T I C A L  A N A L Y S I S  

Propagation of  one-dimensional pressure disturbances in a three-phase medium (liquid, solid 
balls, and gas bubbles) was considered assuming the wavelength to be much larger than the sizes 
of  balls and gas bubbles as well as the distances between them. The liquid with the gas bubbles 
will be considered as a homogeneous medium with average density Pr~, pressure p and velocity Vm. 
We propose that the following conditions are fulfilled: (a) solid particles are spherical with a same 
diameter; (b) there is no collisions between solid particles and there is neither destruction nor 
formation of  new solid particles or bubbles. The set of  equations which describes a one-dimensional 
pressure disturbance propagat ion in dispersed medium takes the form (Nigmatulin 1978): 

t~)Prn O(~Ppm Vra) 
- - - ~  = 0  

c~t dx 
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= 0 [11 
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OVm ~V1 @ ~Vm 
5q~pm- ~ - ( 5  -- 1)~pm ~t = - - ¢ ~ x - - F #  --(5 -- l)q~pm ~- 

~v, - ( 1 - 4 , )  @ + ((1 -- ~b)p 1 + (5 - 1)q~pm ) c~--t- = ~XX + F,,  p, = const, 

where Pm = p2(1 - e) + p3E, ~b is the medium porosity, E is the volume gas content in liquid. The 
quantity 4)E corresponds to the volume gas content in a three-phase medium provided the value 
of  E small enough; a is the added liquid mass coefficient. The subscripts denote the following: 
(1) the solid phase, (2) the liquid phase, (3) the gas phase, (m) the gas-liquid mixture. The index 
0 corresponds to the initial phase state. 

The interface force F~, (Nigmatulin 1978) is: 

3 C~Pm4~(1- q~)(Vm- V,) 2 
r " = 4  d 

where d is the solid balls diameter, c~ is the coefficient of resistance which should be determined 
from the experiment. For  small values of relative velocity the interface force depends linearly on 
relative velocity and may be represented by: 

F~ - 4>~'Vpm(vm -- V,) 
Ko 

where K0 is the permeability of the medium which is usually introduced for porous media study, 
v is the kinematics viscosity of a liquid. 

In order to close the set of equations [1] we will derive the relationship between pressure p and 
the homogeneous mixture density Pro, using the equation for single bubble pulsations in a liquid 
with suspended solid particles. We assume that (a) the number of bubbles in per unit volume of 
medium is constant and bubbles obey adiabatic law; (b) gas bubbles are spherical; they have 
identical size and the bubble's oscillation has a small amplitude. 

Let us consider the two limiting cases for bubble pulsations. 

High frequency limit 

In the first limiting case, when liquid and solid balls densities are quite different and the bubble's 
pulsation frequency is high (co >> o~,. = q~v/20K0--Nakoryakov et al. 1989) the solid balls do not have 
enough time to be involved in radial motion near a bubble. In this case the equation for bubble 
pulsations will be identical to that for the bubble oscillations in a incompressible porous medium 
(Nakoryakov et al. 1989). Substituting again the bubble radius by the mixture density Pm we obtain 
the following equation: 

P m - - ~  o =--C~o f l~75-+ 37 ~t +gc°(~Pm)- [21 

where Co = (ypo/pmE) °5 is the low-frequency (co ~< coo) sound velocity in a gas-liquid mixture, 
B = (7 + 1)/2pm¢, V* = V(1 + 4~R2/4Ko) + v,, fl = R2o/3¢, v, = (7 - 1)R2(tOoa)°5/x/2( is the co- 
efficient of the effective thermal viscosity (Nakoryakov et al. 1983); co 0 is the resonant frequency 
of bubble pulsations, a is the gas temperature conductivity coefficient, R0 is the bubble radius, y 
is adiabatic index. 

Our goal is to derive from the closed set [1] and [2] the evolution equation for the pressure p 
supposing that non-linear, discursive and dissipative terms of equation are small. Since the 
nonlinearity in equation [2] significantly exceeds the hydrodynamic non-linearity in [1] one is able 
to linearize the set [1]. Assuming a linear dependence of the interface force (liquid-solid balls) on 
their relative velocity and taking into account the nonstationary Basset's force (Nigmatulin 1978), 
we can reduce the system [1] to the equation 

02pm l/e"~2 02p (9V qS(1 --(o)pl--((¢O/¢)2--(P2)pm 

x \ 8t + (2~4~v/}OKo) °'  8, (t _-~)o., = 0 [31 
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where 

((0~ -- 2~ "}- 462)p m + ~(1 : ~)plX~ 0"5 
C =Co~. - ~  ~ ' ~ - ~ 1 + ~ - -  1)462pm ) 

is the low-frequency (<or ~< ~< m ~< m0) sound velocity in a three-phase medium (the low-frequency 
velocity of small pressure perturbations). 

Assuming that nonlinear, dispersion and dissipation terms are small and substituting 6p., = 6p/c~ 
from [2] and [3] one obtains the following evolution equation: 

d2p 2 02p 46v 46(1 - 46)p, - ((Co~C) 2 -  462)p m 
0t 2 C ~ - { -  Ko o¢46(1 - ~ ) p l + ( O ¢  - 1)~2pm 

1 t dz 

+ (2 46C2OKo)O, fo @o, (t 

4v, O3p 
\ C o )  \ 3e O x Z O ~ t + z ~ )  =0" [41 

Ignoring the added liquid mass the expression for sound velocity has the form: 

( ( 1-46 p.,~0.s =_TP° 1 4 
C* = Cl~= i \Prne 46 PI / /  

The equation obtained differs from the Navier-Stokes-Bussinesque equation for bubble systems 
by the additional term corresponding to the viscous dissipation caused by the longitudinal relative 
movement of liquid and solid particles in a wave. Ignoring dissipation one is able to obtain the 
following solution in the form of a shock wave with velocity (Nakoryakov et al. 1980): 

U (1_t , + 1 6p~°" 
7 = 7 0 i "  tsl 

Neglecting all dissipate losses in [4] we will obtain the Bussinesque's equation which has the 
stationary solutions in a form of solitons. The expressions for the velocity of a soliton and its 
half-width are as follows (Nakoryakov et al. 1980): 

U~ (1 + ? + 1 6pm']°" 
T-= 3~- -~o / 

( ( 12p° Y ) ) ° s ( ~ )  
6c = fl 4q 6pray+l" " [6] 

If E --+ 0 we obtain two-phase medium (a liquid suspension with solid particles, ¢0---+ c2, Pm--+ P2). 
Following [3] the expression for high-frequency sound velocity in two-phase medium is: 

((~ - 246 + 462)p2 + 46(1 - 46)p,~ °5 e=c t, .) t7] 

where c2 is the sound velocity in a liquid. This expression corresponds to a high frequency limit 
of sound velocity in fluid saturated porous media if Ks --* ~ ,  KB = N = 0 (Johnson & Plona 1982). 
Ks, KB, and N are the bulk modules of solid, porous skeleton and the shear module of porous 
skeleton, respectively. 

L o w  f r equency  limit 

There is no relative radial movement between the liquid and the solid particles in this case, i.e. 
the particles are frozen in the liquid. We obtain well known Rayleigh equation for bubble 
pulsations in liquid with an effective density P0 = O, (1 - 46) + P246. This approach is valid for both 
cases: (a) densities of the liquid and solid phase are close; (b) period of bubble pulsation is longer 
than the characteristic time of the developing of a liquid boundary layers on the solid balls. 

Following the ideas of Nakoryakov's paper (1983) on dynamics of waves in the gas-liquid media 
and substituting the bubble radius by the three-phase media density p it can be written as 

(p = p0(1 -- E46) + p3E46) 
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(p)  ) 
where ce = (ypo/pe~) °5 is the low frequency sound velocity in a three-phase medium (equilibrium 
velocity), fl = R~/3E~ is the dispersion coefficient,/: = (y + l)/2p:~ is the nonlinearity coefficient, 
R0 is the bubble radius, : is the effective viscosity coefficient of suspension of liquid and solid particles. 

Using [8] and the momentum equations for equilibrium three-phase medium we obtain the 
evolution equation for a low-frequency limit: 

632p 2 ~ 2 p f l  634p 4~ 633p /~ 6~2(0p)2 = 0 ' [9] 

Ct 2 ce cgx--- 5 ~x2Ct 2 3E49 Cx2dt OX 2 

Neglecting the dissipative losses we obtain a stationary solution in a form of solitons 
(Nakoryakov et al. 1980): 

2(? ( (  12,0 ±: .0, 
Ap =bpmsech ~ , be= fl 4 +  6pm} y + 1 /  " 

For a two-phase medium (e = 0, co = c2, Pm =/92)  the expression of sound velocity in low- 
frequency limit following [8] is 

('e = c2(P2/P~) ) °'5" [1 1] 

This expression is corresponded to Wood's formula with Ks--+ oo (Johnson & Plona 1982). 
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Figure 1. Scheme of the set-up. 
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Figure  2. H i s t o g r a m  of  air  bubbles  d i s t r ibu t ion  in sizes. (1) E = 2.3%; (2) E = 0.85%. 

3. E X P E R I M E N T A L  SETUP AND P R O C E D U R E  

To investigate pressure wave propagation in three-phase media (liquid-suspended solid particles- 
gas bubbles) we designed experimental setup which is shown in figure 1. The test section (1) is a 
vertical steel tube with an inner diameter of  0.052 m and a length of  1.5 m. The test section was 
partially filled with glass balls of  0.003 m diameter and was limited in the upper and lower parts 
by grids (2) with a 0.0025 m mesh. The porosity of  the medium was determined according to a 
volume of  the working section and the volume of the balls filling the section. To keep solid particles 
suspended, a liquid was pumped over the working section with a constant speed. For  this purpose 
we used a system of a constant level which consisted of a pump (3), a tank of a constant level (4), 
a draining tank (5), an inductive liquid flow rate-meter (6), and regulating valves (7). Water and 
a water-glycerine solution were used as working liquids. Gas bubbles were introduced into a liquid 
at the bottom part of the working section through needle generator (8). Air and helium were used 
in experiments. A histogram of the air bubble propagation in sizes for two values of the gas contents 
is shown in figure 2. Here No is all measured bubbles (No = 100%). N is a number of bubbles with 
a size in the range of  (R - R + cSR). Bubble size was measured photographically. To take pictures 
of gas bubbles, we placed transparent windows (9) in the upper and bottom parts of the test section. 
Measurement of  small gas flow rates was conducted by means of  difference pressure gauge on a 
thin long capillary built into the gas supply system. A gas flow ratemeter (10) and a liquid flow 
ratemeter were previously calibrated. 

A pressure wave with a step-like form was generated by a rupture of  a diaphragm (11) that 
separates two chambers with high (12) and low (13) pressure, and then propagated through a light 
movable piston into the working section. To measure pressure wave profiles we used piezoelectric 
pressure sensors which were placed along the length of  the working section and flush-mounted with 
its inner wall. Signals from the sensors were fed to ADC (14) and then processed by computer (15). 

To measure small volume gas contents in a three-phase medium we used circular conductivity 
sensors (16) which were placed in the bottom, middle and upper parts of the working section. To 
reduce the influence of temperature change and a salt content in the water, we used a reference 
conductivity sensor, with was placed in front of the working section. The bridge scheme of 
measurement operates with a frequency of  1 kHz. The calibration of conductivity sensors was 
carried out in a two-phase (liquid-solid suspended particles) medium by means of small porosity 
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changes (1-5)% near the working value of porosity q5 0. The calibration curve is the time-averaged 
disbalance of bridge voltage on the relative porosity change 6~b/q5 0. In a three-phase medium (gas 
bubbles/liquid/solid balls) we obtained a dependence of the gas flow rate on the averaged indicated 
value of  bridge unbalance for the given working value of porosity. Finally, we built a calibrating 
dependence of  the gas content E = -6~b/qS0 on the gas flow rate at the given ~0, which was used 
further in the experiment. The advantage of the given calibration method is the possibility to 
measure a rather small volume gas content (E ~< 1%) by means of linear approximation of 
calibrating dependence to zero. 

4. R E S U L T S  OF E X P E R I M E N T S  

The performed experiments reveal that nonlinear and dispersive effects significantly influence a 
wave propagation in a suspension of liquid, solid particles and gas bubbles. In figure 3 there is 
shown the evolution of a step-like profile wave in water with glass balls and air bubbles for different 
volume gas contents E and wave intensities Ap. Here x is a distance from the entry of a wave into 
the medium up to the point of  measurement. It is seen that for small values of  E and for small 
amplitude waves the dispersive and nonlinear effects are weak and, actually, do not change the 
shape of  the wave, and the oscillating shock wave front can not be formed at considered distances 
(figure 3(a)). With wave amplitude increasing up to Ap/po ~ 1, even at distance x = 0.712m a 
quasi-stationary oscillating shock wave forms which, due to the dissipative processes, weakly 
attenuates as it propagates--see  figure 3(b). As the gas volumetric content increases, the dissipation 
results in the appearance of the relaxation zone on the forward front of  the wave and in the 
attenuation of  oscillations--figure 3(c). Comparing these pressure wave profiles with results on 
the pressure wave propagation in gas-liquid media (Nakoryakov et al. 1983) we can remark 
their qualitative similarity. Thus, the introduction of a solid phase into a gas-liquid medium 
arises some quantitative changes into wave propagation velocity and structure. To describe a 
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Figure  3(a, b). (Caption opposite.) 
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wave evolution in a three-phase medium more precisely, the solutions of  [4] and [9] can be 
used. 

To investigate the mechanisms of pressure wave attenuation in a three-phase medium, we used 
liquids with different viscosity: water and water-glycerine solution with viscosity of  
v - - 3  x 1 0 - 6 m 2 / s .  As well as gases with different thermal conductivity. It was shown that the 
pressure wave evolution in a water and in a water-glycerine solution (with solid balls and air 
bubbles in both cases) does not actually differ from the rest with similar parameters for a medium 
and a wave. However, a variation of a bubble gas thermal conductivity changes the dissipative 
properties of  a medium. The pressure wave evolution patterns in a suspension of  water with solid 
balls and gas bubbles (a--air ,  b--hel ium) are represented in figure 4. It is seen that the threehold 
increase of  effective thermal viscosity coefficient accompanies the change of wave shape. The 

(c) 

x = 0.025 m 

t I 
J 0.712 m 

J 1.12m 

I 10 -3  s I 

Figure 3. Evolution of a p r e s s u r e  w a v e  of step-like profile in water with glass balls and air bubbles. 
~b = 0.58, (a, b) E = 0.5%; (c) E = 2.3%. 
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Figure 4. Evolution of a pressure wave in water suspension with glass balls and (a) air bubbles, (b) helium 
bubbles; ¢ = 0.58, e = 1.4%. 

oscillating shock wave is depicted in figure 4(a); dissipative effects result only in the appearance 
of relaxation zone whereas in a medium with helium bubbles the monotonical profile without 
oscillations is formed (figure 4(b)). This is associated with enlargement of heat exchange between 
the gas in bubbles and their environment. Consequently, the main mechanism of wave dissipation 
in three-phase suspensions, as well as in gas-liquid media, is the thermal mechanism of dissipation. 

The investigation on the structure of weak nonlinear oscillating shock waves shows that the first 
oscillation of a wave is properly described by a soliton form. The shape of shock wave (first 
oscillation only, curve 1) and calculated shape of wave (from [10]---curve 2; from [6]---curve 3) 
are shown in figure 5. Obviously, for wave amplitudes Apm/Po ~ 1 the experimental profile is 
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Figure 5. Shock wave shape (the first oscillation). (1) experiment; (2) calculation according to [10]; 
(3) calculation according to [6]. 
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Figure 6. Half-width o f  a forward front of  an oscillating shock wave. 

properly approximated by the calculated curve 2 (figure 5(a)) which corresponds to model 
disregarding the relative radial movement of a liquid and the solid particles near bubbles in a wave. 
Thus, even for solid particles with rather high density (p~/P2 = 2.46), the dispersive properties of 
a three-phase medium do not actually differ from the dispersive properties of a gas-liquid medium. 
The medium dispersion coefficient is determined by the volume gas content in a three-phase 
medium E~ and is equal to fl = R~/3Edp. 

With the increase of shock wave amplitude a significant decrease of oscillation duration and a 
sharpening of their shape takes place. An experimental profile of the first oscillation in the wave 
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Figure 7. Shock wave velocity. (1), (2) experiment, (3) calculation according to [5], ~ =0.58,  
E = (0.5-2.5)%. 
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with an amplitude of  A p m / p  0 = 4.7 (curve 1) differs from a shape of the calculated soliton (curve 
2, [10]) and from curve 3 [6J--see figure 5(b). 

A comparison of the half-width of the first wave oscillation 6e observed in the experiments with 
that parameter from [10] (noted as 6c) is shown in figure 6. Here, e = (0.5-0.9)%. (6e = t 'U,  t* 
is the time of pressure growth in a wave front from 0.42Apm to Apm, Apm is the amplitude of the 
first oscillation, U is a velocity of  a shock wave.) If amplitudes Apm/p o <~ 2, the half-width of the 
first wave oscillation agrees with the calculated value of a soliton half-width. For a higher intensity 
(Apm/Po >I 2) the experimental wave profile becomes significantly more narrow in comparison with 
calculated profile. A high scattering of experimental data is connected with a fairly wide distribution 
in bubble sizes and nonuniform distribution of bubbles along the tube length. A quasi-stationary 
property of  the wave enhances this data scattering also. 

Experimental data on the dependence of shock wave velocity in a three-phase medium on its 
amplitude are shown in figure 7. A water-air mixture was a working medium. The velocity (curve 
l) measured on the initial part of propagation, coincides with the ones measured at a distance of 
1 m from the entrance to the medium (curve 2). It suggests that a shock wave is formed immediately 
at the entrance to a three-phase medium. The calculated curve 3, derived according to [5], describes 
properly the experimental data within the investigated range of amplitudes. Thus, the inertial 
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Figure 8, Sound velocity in a water suspension with (1-5) lead balls; glass balls (6-10). (5), (10) experiment 
(I-4), (6-9) calculations. 
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properties of the solid phase have a great influence on the velocity of wave propagation. A 
high-frequency limit and velocity c is more appropriate for calculation of shock wave velocity than 
the equilibrium velocity c~. Note that the values of calculated velocity considering the added liquid 
mass ~ = 1 - 0.5(1 - 1/tk) (Berryman 1980) and this velocity disregarding added mass effect (0t = 1) 
differs by 3% only, but this is less than the precision of measurement. 

Let us discuss the influence of added liquid mass 0~ on the velocity of wave propagation. To 
increase the precision, we carried out the measurements of a wave velocity in a suspension of  a 
liquid with solid particles without gas bubbles. The characteristic profiles of pressure waves in a 
water suspension with lead balls are shown in figure 8(a). The calculated dependencies of sound 
velocities in a water suspension with lead balls (curves l-4) and with glass balls (curves 6-9) on 
medium porosity are presented. Here c2 is the sound velocity in a liquid measured directly during 
the experiment. The lines (1, 6) correspond to a high-frequency sound velocity [7] at ~ = 1, curves 
2, 7 describe a high-frequency sound velocity [7] at ~ = 1 + 0.5(1 - tk) (Nigmatulin 1978; Sergeev 
& Wallis 1991), curves 3, 8--high-frequency sound velocity [7] at ~ = 1 -0 .5(1  - 1/4~) (Berryman 
1980), curves 4, 9--low-frequency sound velocity [11]. Here, the experimental points for lead balls 
(curve 5) and glass balls (curve 10) are also given. It is seen (especially for lead balls) that the 
experimental data are properly described by the calculated curves (3-8) which take into account 
the influence of  the added liquid mass on the wave propagation velocity according to Berryman 
(1980). 

5. C O N C L U S I O N S  

(1) The evolution equations describing the propagation of the weak nonlinear waves in liquid 
with the gas bubbles and the solid particles has been derived. The stationary solutions of  these 
equations such as shock waves and solitons have been obtained. 

(2) The experimental data on the structure, velocity and attenuation of  the shock waves in 
three-phase medium have been obtained. The generalization of the experimental data on the basis 
of theoretical considerations was carried out. 

(3) The main mechanism for attenuation of the pressure waves in a three-phase medium was 
shown to be a heat exchange between the gas bubbles and surrounding liquid. 

(4) It was supported experimentally that the coefficient of added liquid mass has essential 
influence on the propagation velocity of the pressure wave. 
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~q~ Opm ~GP m 
P ~ -  + q ~ -  + q~Pm ~ -  = 0 

~gq~ ~Vl 
--Pl ~ -  Jr" (1 --  ~b)p, - ~ x  = 0. 

Excepting ~q~/#t from [A1] and [A2] we obtain: 

~b ~ -  + q~pm + (1 -- q~)p m =0 .  

From the third and fourth equations of system [1] we obtain: 

A P P E N D I X  

Derivation of the Evolution Equation 

Assuming a linear approach we obtain from the first and the second equations of  system [1]: 

[A1] 

~V m ~V l ~p 
q~Pm~ - + ( 1 - q ~ ) p '  -~ -- ~xx" 

[A2] 

[A3] 

[A4] 

Taking a derivative by t of [A3] and taking x-derivative of [A4] and excluding by turns 02Vm/OXdt 
and O2V~/OxOt we obtain: 

(~2V I 6~2p ~2pm __ 
(1 - -  (])) ( P l  - -  Pm)  ~ + ~ X  2 - -  (t) ~ -  - -  0 [ m 5 ]  

O2Vm O2p t~ 2prn 
(P2m -- ProP, ) ~ +Pm eX ~ -- qSp, ~ = 0. [A6] 

Taking a derivative by x of the third equation of system [1] and considering [A3], [A5], [A6] we 
obtain: 

~t2 ~00 (~x2 K0 (~b~  - ~ ) ~  + ?~- ~ ~q~ 2pm ) q ~ - -  + Pm~--X J = [A7] 

{(ct -- 2~b + q~Z)p m + ~b(1 - ~b)pl'~ °s 
C = C  0 . . . . . . . . .  

Assuming dissipation is negligible we obtain from [A7]: 

~2pm ~ ( C "~2 632p [A8] 
a, t,7oo) 

This expression is necessary for displacing of ~2/~t2 by a2/Ox 2 in small dissipative term of [A7]: 

(~V 1 f(~2V 1 --1 f /  ~2pm O2P~dt 
- J O x d t  dt = (1 - 4~)(Pm-- P ~ ) _ .  ~b ~ ~7x2 j 

- -1  C32pm (~0~ ~-Pm]d t 
=(l__~b)(pm__p, ) ( a - ~ - - - \ c  J 8t z ) 

= ( 1  - - t ~ ) ( p  m - p , )  ~b -- 63 t . 
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Inserting the expression O V 1/Ox into [A7] and considering a non-stationary Basset's force we obtain: 

t;32pmeot2 (C) 2o2p-}c~vc~(1-c~)p'-((c°/c)2-(a2)pm~oo ~ Ko ct(a-OC-~)~-+~ ~ - - ~  

x( Pm f, po dr ) 
\ Ot + (2ndav/2OKo)°SJo 0r (t -~)0.~. = 0. [A9] 

Assuming that nonlinear, dispersive and dissipative terms in [A9] and [2] are small we can substitute 
in these terms 6pro ~ 6p/c~ and obtain the evolution equation: 

c3t2 c ~ H K0 ~b(1 - q~)p, + (~ 1)~bZpm ~ -~ (2rr~bv/2OKo) °s Op dr - -  Oz (t  - - ~ ) o . s  

- - \  / x ~  f l ~ H  3e a t 3 + z ~ - - ~ - )  =0" [A10] 

Approximating O2p/dt 2 .~ c202p/Ox 2 in third last terms of equation [A10] we obtain the evolution 
equation [4]. 


